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Learning Objectives: 

• Describe the motivation underlying analyses of tumor heterogeneity 
• Describe the role of Image ‘omics in Oncology 
• List the different levels of biomarker qualification 

Image “Omics” involves the high throughput extraction of quantitative imaging features with the intent 
of creating mineable databases from images (1). Such profound analyses and mining of image feature 
data will reveal quantitative predictive or prognostic associations between images and medical 
outcomes. In cancer, current quantitative measurements are limited to dimensional measurements of 
tumor size via one (RECIST) or two (WHO) dimensional long axis measures (2). These measures do not 
reflect the complexity of tumor morphology or behavior, nor, in many cases, are changes in these 
measures predictive of therapeutic benefit (3). When additional quantitative measures are performed, 
they generally average values over an entire region of interest (ROI). 

In focused studies, texture features have been shown to provide significantly higher prognostic power 
than ROI based methods (4-7). This is reflective of the fact that tumors are highly heterogeneous 
systems, and that such heterogeneity has high prognostic power (8). Profound analyses of such image 
features can improve prediction of clinical CT (9), MR (10) or PET (11) images. Although paradigm-
shifting, these analyses have been performed manually and the studies were underpowered. In order to 
qualify as a clinically useful biomarker, such studies have to be performed with larger cohorts in 
prospective, multi-institutional trials. In the current iteration of radiomics, image features have to be 
extracted automatically and with high throughput, putting a high premium on novel machine learning 
algorithm developments. 

The goal of radiomics is to convert images to mineable data, with high fidelity and high throughput. The 
radiomics enterprise can be divided into five processes with definable inputs and outputs, each with its 
own challenges that need to be overcome: (i) image acquisition and reconstruction: (ii) image 
segmentation and rendering: (iii) feature extraction and feature qualification (iv) databases and data 
sharing; and (v) ad hoc informatics analyses (12). Each of these steps must be developed de novo and, as 
such, poses discrete challenges that have to be met. For example, optimum protocols for image 
acquisition and reconstruction have to be identified and harmonized. Segmentations have to be robust 
and involve minimal operator input. Features have to be generated that robustly reflect the complexity 
of the individual volumes, but cannot be overly complex or redundant. Informatics data bases that allow 
incorporation of image features and image annotations, along with medical and genetic data have to be 
generated. Finally, the statistical approaches to analyze these data have to be optimized, as radiomics is 
not a mature field of study. 



Variation in results may come from variations in any of these individual processes. Thus, after 
Optimization, another level of challenge is to harmonize and standardize the entire process, while still 
allowing for improvement and process evolution. 
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